Rectified 8-simplexes
|  8-simplex |  Rectified 8-simplex | ||
|  Birectified 8-simplex |  Trirectified 8-simplex | ||
| Orthogonal projections in A8 Coxeter plane | |||
|---|---|---|---|
In eight-dimensional geometry, a rectified 8-simplex is a convex uniform 8-polytope, being a rectification of the regular 8-simplex.
There are unique 3 degrees of rectifications in regular 8-polytopes. Vertices of the rectified 8-simplex are located at the edge-centers of the 8-simplex. Vertices of the birectified 8-simplex are located in the triangular face centers of the 8-simplex. Vertices of the trirectified 8-simplex are located in the tetrahedral cell centers of the 8-simplex.
Rectified 8-simplex
| Rectified 8-simplex | |
|---|---|
| Type | uniform 8-polytope | 
| Coxeter symbol | 061 | 
| Schläfli symbol | t1{37} r{37} = {36,1} or | 
| Coxeter-Dynkin diagrams |                or              | 
| 7-faces | 18 | 
| 6-faces | 108 | 
| 5-faces | 336 | 
| 4-faces | 630 | 
| Cells | 756 | 
| Faces | 588 | 
| Edges | 252 | 
| Vertices | 36 | 
| Vertex figure | 7-simplex prism, {}×{3,3,3,3,3} | 
| Petrie polygon | enneagon | 
| Coxeter group | A8, [37], order 362880 | 
| Properties | convex | 
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S1
8. It is also called 06,1 for its branching Coxeter-Dynkin diagram, shown as 











 .
.
Coordinates
The Cartesian coordinates of the vertices of the rectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,0,1,1). This construction is based on facets of the rectified 9-orthoplex.
Images
| Ak Coxeter plane | A8 | A7 | A6 | A5 | 
|---|---|---|---|---|
| Graph |  |  |  |  | 
| Dihedral symmetry | [9] | [8] | [7] | [6] | 
| Ak Coxeter plane | A4 | A3 | A2 | |
| Graph |  |  |  | |
| Dihedral symmetry | [5] | [4] | [3] | 
Birectified 8-simplex
| Birectified 8-simplex | |
|---|---|
| Type | uniform 8-polytope | 
| Coxeter symbol | 052 | 
| Schläfli symbol | t2{37} 2r{37} = {35,2} or | 
| Coxeter-Dynkin diagrams |                or            | 
| 7-faces | 18 | 
| 6-faces | 144 | 
| 5-faces | 588 | 
| 4-faces | 1386 | 
| Cells | 2016 | 
| Faces | 1764 | 
| Edges | 756 | 
| Vertices | 84 | 
| Vertex figure | {3}×{3,3,3,3} | 
| Coxeter group | A8, [37], order 362880 | 
| Properties | convex | 
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S2
8. It is also called 05,2 for its branching Coxeter-Dynkin diagram, shown as 









 .
.
The birectified 8-simplex is the vertex figure of the 152 honeycomb.
Coordinates
The Cartesian coordinates of the vertices of the birectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,1,1). This construction is based on facets of the birectified 9-orthoplex.
Images
| Ak Coxeter plane | A8 | A7 | A6 | A5 | 
|---|---|---|---|---|
| Graph |  |  |  |  | 
| Dihedral symmetry | [9] | [8] | [7] | [6] | 
| Ak Coxeter plane | A4 | A3 | A2 | |
| Graph |  |  |  | |
| Dihedral symmetry | [5] | [4] | [3] | 
Trirectified 8-simplex
| Trirectified 8-simplex | |
|---|---|
| Type | uniform 8-polytope | 
| Coxeter symbol | 043 | 
| Schläfli symbol | t3{37} 3r{37} = {34,3} or | 
| Coxeter-Dynkin diagrams |                or          | 
| 7-faces | 18 | 
| 6-faces | |
| 5-faces | |
| 4-faces | |
| Cells | |
| Faces | |
| Edges | 1260 | 
| Vertices | 126 | 
| Vertex figure | {3,3}×{3,3,3} | 
| Petrie polygon | enneagon | 
| Coxeter group | A7, [37], order 362880 | 
| Properties | convex | 
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S3
8. It is also called 04,3 for its branching Coxeter-Dynkin diagram, shown as 







 .
.
Coordinates
The Cartesian coordinates of the vertices of the trirectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,1,1). This construction is based on facets of the trirectified 9-orthoplex.
Images
| Ak Coxeter plane | A8 | A7 | A6 | A5 | 
|---|---|---|---|---|
| Graph |  |  |  |  | 
| Dihedral symmetry | [9] | [8] | [7] | [6] | 
| Ak Coxeter plane | A4 | A3 | A2 | |
| Graph |  |  |  | |
| Dihedral symmetry | [5] | [4] | [3] | 
Related polytopes
This polytope is the vertex figure of the 9-demicube, and the edge figure of the uniform 261 honeycomb.
It is also one of 135 uniform 8-polytopes with A8 symmetry.
| A8 polytopes | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  t0 |  t1 |  t2 |  t3 |  t01 |  t02 |  t12 |  t03 |  t13 |  t23 |  t04 |  t14 |  t24 |  t34 |  t05 | 
|  t15 |  t25 |  t06 |  t16 |  t07 |  t012 |  t013 |  t023 |  t123 |  t014 |  t024 |  t124 |  t034 |  t134 |  t234 | 
|  t015 |  t025 |  t125 |  t035 |  t135 |  t235 |  t045 |  t145 |  t016 |  t026 |  t126 |  t036 |  t136 |  t046 |  t056 | 
|  t017 |  t027 |  t037 |  t0123 |  t0124 |  t0134 |  t0234 |  t1234 |  t0125 |  t0135 |  t0235 |  t1235 |  t0145 |  t0245 |  t1245 | 
|  t0345 |  t1345 |  t2345 |  t0126 |  t0136 |  t0236 |  t1236 |  t0146 |  t0246 |  t1246 |  t0346 |  t1346 |  t0156 |  t0256 |  t1256 | 
|  t0356 |  t0456 |  t0127 |  t0137 |  t0237 |  t0147 |  t0247 |  t0347 |  t0157 |  t0257 |  t0167 |  t01234 |  t01235 |  t01245 |  t01345 | 
|  t02345 |  t12345 |  t01236 |  t01246 |  t01346 |  t02346 |  t12346 |  t01256 |  t01356 |  t02356 |  t12356 |  t01456 |  t02456 |  t03456 |  t01237 | 
|  t01247 |  t01347 |  t02347 |  t01257 |  t01357 |  t02357 |  t01457 |  t01267 |  t01367 |  t012345 |  t012346 |  t012356 |  t012456 |  t013456 |  t023456 | 
|  t123456 |  t012347 |  t012357 |  t012457 |  t013457 |  t023457 |  t012367 |  t012467 |  t013467 |  t012567 |  t0123456 |  t0123457 |  t0123467 |  t0123567 |  t01234567 | 
Notes
References
-  H.S.M. Coxeter: 
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
-  Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
 
 
-  Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
 
- Klitzing, Richard. "8D Uniform polytopes (polyzetta)". o3x3o3o3o3o3o3o - rene, o3o3x3o3o3o3o3o - brene, o3o3o3x3o3o3o3o - trene
External links
- Olshevsky, George. "Simplex". Glossary for Hyperspace. Archived from the original on 4 February 2007.
- Polytopes of Various Dimensions
- Multi-dimensional Glossary
| Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / E9 / E10 / F4 / G2 | Hn | |||||||
| Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
| Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
| Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
| Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
| Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
| Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
| Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
| Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
| Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
| Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
| Topics: Polytope families • Regular polytope • List of regular polytopes and compounds | ||||||||||||